Glucose and galactose {hexose} have six carbons. One amino group can bind at glucose second carbon {glucosamine}. Glucosamine is in insect chitin. One amino group can bind to galactose {galactosamine}. Galactosamine is in glycolipids and chondroitin sulfate. One amino group can bind to aldehyde sugars at first carbon {muramic acid} {neuraminic acid}. Muramic acid and neuraminic acid make cell walls.
Sucrose has one glycosidic bond between fructose and glucose, from second carbon to first carbon {invert sugar}|, to make acetal or ketal.
Carbohydrates {monosaccharide}| can have three to seven carbons and one carbonyl group, as in glucose, fructose, mannose, maltose, and galactose. Monosaccharides {triose} can have three carbons, such as glyceraldehyde. Monosaccharides {tetrose} can have four carbons. Monosaccharides {pentose} can have five carbons, such as ribose. Monosaccharides (hexose) can have six carbons. Aldehyde hexoses are glucose, mannose, and galactose. Ketone hexoses include fructose, in honey and fruit. Monosaccharides {heptose} can have seven carbons.
Sugar aldehyde or ketone group can reduce to alcohol group {reduced sugar}|, to make glycerol, inositol, sorbital, and mannitol.
Carbohydrates {sugar}| can be disaccharides. Glycosidic bonds link two monosaccharides. Sucrose, in sugar cane, sugar beets, and corn syrup, has fructose and glucose. Maltose, in malt, has two glucoses.
Lactose, in milk, has galactose and glucose. Lactase gene, for lactose digestion, can stay active after infancy. Regulatory-region mutations happened in Funnel Beaker culture of Sweden and Holland [-4000 to -3000], in Nilo-Saharan peoples of Kenya and Tanzania [-4800 to -700], in Beja people of northeast Sudan [-4800 to -700], and in Afro-Asiatic peoples of north Kenya [-4800 to -700].
5-Chemistry-Biochemistry-Carbohydrate-Carbohydrates
Outline of Knowledge Database Home Page
Description of Outline of Knowledge Database
Date Modified: 2022.0225