superior colliculi

Mammal midbrain dorsal surface has large symmetrical bumps {superior colliculi} that mediate light accommodation, eyeball movements, body movements for vision, orientation, and attention [Aldrich et al., 1987] [Brindley et al., 1969] [Celesia et al., 1991].

anatomy

Superior colliculus has seven alternating cellular and fibrous layers with few interneurons, eight types of synaptic terminals, and broad dendrite arbors. Superficial layers I to III and deep layers IV to VII have topographic motor maps and associated visual and touch maps.

Superior colliculus removal causes failure to detect contralateral visual stimuli.

anatomy: input

Superior colliculus efferent neurons for eye movements receive input from substantia nigra.

Superior colliculus deep layers receive vision information ipsilaterally from lateral suprasylvian visual area and anterior ectosylvian visual area, not from striate visual cortex.

Deep layers receive somatosensory input from anterior ectosylvian sulcus dorsal part, contralateral sensory trigeminal complex, dorsal column nuclei, lateral cervical nucleus, and spinal cord. Contralateral sensory trigeminal complex receives C fibers and A-delta fibers.

Deep layers receive auditory input from anterior ectosylvian sulcus Field AES region, inferior colliculus contralateral brachium, inferior colliculus external nucleus, nucleus sagulum, and dorsomedial periolivary nucleus.

Deep layers receive motor input from frontal eye fields, motor cortex, zona incerta, thalamus reticular nucleus, posterior commissure nucleus, perihypoglossal nucleus, contralateral superior colliculus, locus coeruleus, raphé dorsalis, parabrachial nuclei, reticular formation, and hypothalamus.

Deep layers receive from basal ganglia through substantia nigra pars reticulata. Deep layers receive from cerebellum deep nuclei, including medial and posterior interposed nuclei.

anatomy: output

Superior colliculus deep layers send to thalamus, opposite superior colliculus, brainstem, and spinal cord. Superior colliculus deep layers connect to sense and motor cerebral cortex and to brainstem and spinal cord, to position peripheral sense organs. Deep layers also send contralaterally to tegmentum and spinal cord to reposition eyes, head, limbs, ears, and whiskers.

neurons: receptive field

Superior-colliculus neurons have central ON zones surrounded by lower sensitivity areas, not like retina and lateral-geniculate-nucleus ON-center-neuron or OFF-center-neuron receptive fields. Receptive fields are larger than in lateral geniculate or cortex neurons. Border is inhibitory {suppressive zone}. The most-effective stimulus is smaller than receptive field. Moving or flashing stimuli are more effective than stationary ones. Movement direction is more effective. Slow movements are more effective than rapid ones. Repeating same stimulus produces response habituation.

neurons: noxious

Superior colliculus neurons {nociceptive-specific neuron} (NS) can respond to noxious stimuli. Superior colliculus neurons {wide dynamic range neuron} (WDR) can respond to all mechanical stimuli, but especially to noxious mechanical or thermal stimuli.

neurons: multisensory

Superior colliculus neurons are 25% unimodal and 75% multisensory. Multisensory and unimodal neurons typically require 100 milliseconds to process information, but some multisensory neurons take 1500 milliseconds.

neurons: auditory

Superior colliculus has four auditory neuron types. Compared to cortical auditory neurons, superior colliculus auditory neurons are more insensitive to pure tones and more sensitive to spatial location, interaural time, and intensity differences. They respond better to moving stimuli, have directional selectivity, habituate to repeated stimuli, and have restricted receptive fields with maximal-response regions.

neurons: somatosensory

Superior colliculus somatosensory neurons respond to hair or skin stimulation, have well-defined receptive fields, prefer intermediate-velocity or high-velocity stimuli, habituate rapidly, are large, have best regions, have no inhibitory surrounding areas, and have no directional selectivity.

neurons: movement field

Midbrain neuron receptive fields {movement field} are like sense-neuron receptive fields. Neurons with similar movement fields are in same superior colliculus region. If neuron activity exceeds threshold, amount above threshold determines saccade movement velocity and distance.

eye movement

Mammal superior colliculi and non-mammal optic tectum process multisensory information, shift attention, and control voluntary and involuntary eye and other sense-organ movements, for orientation and attention. Stimulation shifts eyes, ears, and head to focus on stimulus location. High intensity causes withdrawal or escape.

Anteromedial superior colliculi stimulation causes contralateral, upward, and parallel conjugate eye movement.

Lateral superior colliculi stimulation causes conjugate, contralateral, and downward movement.

To initiate eye movement to periphery, caudal superior colliculus, which represents peripheral visual space, has pre-motor activity.

Visual fixation involves neurons in rostral superior colliculus.

eye movement: saccade

Superior colliculus neurons {motor error neuron} can generate low-frequency, long-duration discharge to signal difference between current eye position and target position. Superior colliculus neurons can initiate saccades and determine speed, direction, and amplitude [Corbetta, 1998] [Schall, 1991] [Schiller and Chou, 1998]. Saccade initiation and velocity, duration, and direction specification are separate processes. Saccade commands are many-neuron vector sums.

Related Topics in Table of Contents

Biological Sciences>Zoology>Organ>Nerve>Brain>Brainstem>Midbrain

Whole Section in One File

4-Zoology-Organ-Nerve-Brain-Brainstem-Midbrain

Drawings

Drawings

Contents and Indexes of Topics, Names, and Works

Outline of Knowledge Database Home Page

Contents

Glossary

Topic Index

Name Index

Works Index

Searching

Search Form

Database Information, Disclaimer, Privacy Statement, and Rights

Description of Outline of Knowledge Database

Notation

Disclaimer

Copyright Not Claimed

Privacy Statement

References and Bibliography

Consciousness Bibliography

Technical Information

Date Modified: 2022.0224