ratio test

If successive-term to previous-term ratio limit is less than one, sequence converges {ratio test}. If successive-term to previous-term ratio limit is greater than one, sequence diverges. If successive-term to previous-term ratio limit is one, sequence can converge or diverge. If general-term limit equals zero, successive-term to previous-term-ratio absolute-value limit is less than one. Generalized ratio test {d'Alembert's test} exists.

Related Topics in Table of Contents

Mathematical Sciences>Calculus>Series>Convergence>Test

Whole Section in One File

3-Calculus-Series-Convergence-Test

Drawings

Drawings

Contents and Indexes of Topics, Names, and Works

Outline of Knowledge Database Home Page

Contents

Glossary

Topic Index

Name Index

Works Index

Searching

Search Form

Database Information, Disclaimer, Privacy Statement, and Rights

Description of Outline of Knowledge Database

Notation

Disclaimer

Copyright Not Claimed

Privacy Statement

References and Bibliography

Consciousness Bibliography

Technical Information

Date Modified: 2022.0224