wave function

Functions {wave function} can be waves.

series

Periodic functions can be trigonometric series. If period is T, series is: a0 + sum over i of (ai * cos(2n * pi * tau / T) + bi * sin(2n * pi * tau / T)), where a0 = (1/T) * (integral from -T/2 to T/2 of f(t) * dt), ai = (2/T) * (integral of f(t) * cos(2n * pi * t / T)), and bi = (2/T) * (integral of f(t) * sin(2n * pi * t / T)).

Sine or cosine can be zero. Even periodic function uses cosine. Odd periodic function uses sine.

period

For function over interval with width x, period T is twice interval length x: T = 2*x.

jump

Term coefficients depend on differences {jump} between left-hand and right-hand function limits, derivatives at jump points, and second derivatives at jump points.

analyzer

Harmonic analyzer can find first 20 coefficients from function graph and areas. Integrator circuits can calculate area.

Related Topics in Table of Contents

Mathematical Sciences>Algebra>Function>Kinds>Trigonometric

Whole Section in One File

3-Algebra-Function-Kinds-Trigonometric

Drawings

Drawings

Contents and Indexes of Topics, Names, and Works

Outline of Knowledge Database Home Page

Contents

Glossary

Topic Index

Name Index

Works Index

Searching

Search Form

Database Information, Disclaimer, Privacy Statement, and Rights

Description of Outline of Knowledge Database

Notation

Disclaimer

Copyright Not Claimed

Privacy Statement

References and Bibliography

Consciousness Bibliography

Technical Information

Date Modified: 2022.0224